

Mitsui Chemicals, Inc.

| Domestic Sites

[Head Office]

Shiodome City Center, 1-5-2, Higashi-Shimbashi, Minato-ku, Tokyo 105-7122, Japan Performance Polymers Division TEL:+81-3-6253-3486 FAX:+81-3-6253-4221

| Overseas Sites

[Mitsui Chemicals Europe GmbH]

Oststarasse 34, 40211 Düsseldorf, Germany TEL:+49-211-173320 FAX:+49-211-17332-701

[Mitsui Chemicals (CHINA)Co.,Ltd.]

21F, Capital Square, 268 Hengtong Road,
Jing'an District, Shanghai, 200070,P. R. China
TEL:+86-21-5888-6336 FAX:+86-21-5888-6337

[TAIWAN MITSUI CHEMICALS, INC.]

7F-2, No.4, Sec. 1, Jhongsiao W. Rd., Taipei 10041, Taiwan TEL:+886-2-2361-7887 FAX:+886-2-2361-6776

[Osaka Branch]

Shinanobashi Mitsui Bldg. 8F, 1-11-7, Utsubohonmachi, Nishi-ku, Osaka 550-0004, Japan TEL:+81-6-6446-3633 FAX:+81-6-6446-3645

[Mitsui Chemicals Korea, Inc.]

15F, Building-B, PINE AVENUE, 100,Eulji-ro, Jung-gu, Seoul, KOREA 04551 TEL:+82-2-6031-0200 FAX:+82-2-6031-0220

[Mitsui Chemicals Asia Pacific, Ltd.]

3 HarbourFront Place #10-01 HarbourFront Tower 2 Singapore 099254, Singapore TEL:+65-6534-2611 FAX:+65-6535-5161

[Mitsui Chemicals India Pvt. Ltd.]

3rd FLOOR, B-Wing, D3, District Centre, Saket, New Delhi 110017, India TEL:+91-11-3010-7400 FAX:+91-11-3010-7499

[Mitsui Chemicals America, Inc.]

800 Westchester Avenue, Suit S306 Rye Brook, NY 10573, U.S.A TEL:+1-914-253-0777 FAX:+1-914-253-0790

HI-ZEX MILLION™

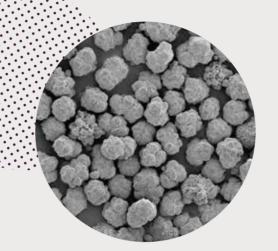
MIPELON™

LUBMER™

UHMW-PE

Ultra-High Molecular Weight Polyethylene

HI-ZEX MILLIONTM


Ultra-High Molecular Weight Polyethylene

Iwakuni-Otake Factory of Mitsui Chemicals is one of the first high-density polyethylene plants in the world to produce HDPE utilizing the Zeigler Method.

 $HI\text{-}ZEX\ MILLION^{\text{TM}}$ is an ultra-high molecular weight polyethylene powder which has been developed and perfected over time with innovative technologies. It has molecular weights up to six million.

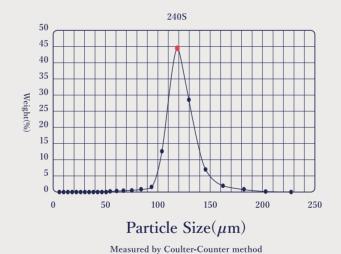
From its outstanding features of lightness and mechanical properties, it can contribute to weight reduction and improved durability in many markets, such as industrial materials and medical devices. From its high quality and robust performance, HI ZEX MILLIONTM is used as a raw material in high-strength fiber applications and as separators for Lithium ion batteries.

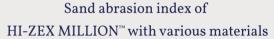
Furthermore, Mitsui Chemicals has developed two unique products named MIPELONTM and LUBMERTM. LUBMERTM helps overcome the process-ability challenges of UHMWPE with the unique formula.

Since **1958**

Ultra-High Molecular Weight Polyethylene powder

HI-ZEX MILLION™


Product/Powder 120~260μm Molecular weight/0.5~6 million


Stable Particle Size, Molecular Weight and Performance

Mitsui Chemicals optimizes our HI-ZEX MILLIONTM technology by managing the molecular weight and particle size distribution. This allows HI-ZEX MILLIONTM to have ten times the abrasion resistance when compared to general high-density polyethylene. It can also be compared favorably to some metals such as carbon steel and brass.

Sliding properties of HI-ZEX MILLION $^{\text{TM}}$ can help prevent seizure without the use of lubricants.

We meet diverse needs with our lineups that include FDA grades.

[Experimental Condition] 25×75×3mm Abrasive grain:JISR6001(A-43)
Water/Sand=3.0/2.6kg Rotation Angle:45°
Sample Location:3cm 25°C 1600rpm×3h

Sample Location:3cm 25°C 1600rpmx3h

UHMW-PE 2

ı UHMW-PE

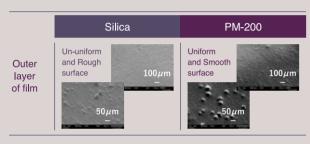
Mitsui Chemicals offers

Innovation in process -ability of UHMWPE

Easy to mold, disperse, or compound while maintaining high functional property.

Ultra-High Molecular Weight PE HI-ZEX MILLION™

Superb Functionality

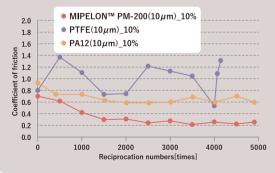

* HI-ZEX MILLION™, MIPELON™, LUBMER™ are a registered trademark of Mitsui Chemicals, Ind

PM-200(10µm)

Application Example

Anti-Blocking Agent for Film Application

- •Prevent film blocking
- •Does not cause any issue derived from bleed out over time, unlike other slipping agent
- •Can be used for food application


 $\mbox{PM-200}$ has less chance to drop off from the film nor scratch the surface compared to silica.

Application Example

Additive for paint and coating materials

•Improve the abrasion resistance of Acrylic and Urethane based paint and coating materials

Measurement result of friction coefficient with glass.

MIPE LONTM

One of the finest UHMWPE powder $(10\sim65\mu\text{m})$ as a functional additive

Uniform Dispersion

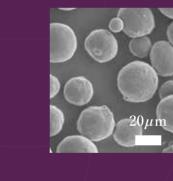
MIPELONTM can be applied

to applications such as Films, Coating Material, Grease, and

Rubber Additive to improve

the abrasion resistance and

durability of the product.


Thanks to it's high mechanical properties and the round

spherical shape, it functions as a micro-bearing inside the

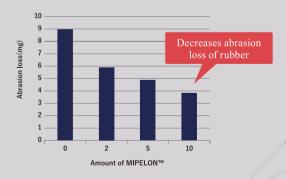
material.

Abra sion Resis tance

High Durability

Application Example

Long Lasting & High Durability Grease


- MIPELON™ functions as a micro-bearing particle inside the grease
- •Decreases the coefficient of friction and sliding property
- •Decrease squeaking noise for longer time
- Improved durability can achieve maintenance-free
- Can maintain the quality of grease for longer period of time

Application Example

Rubber Additive for sliding properties and high durability

- •Improves sliding property of rubber
- Makes the rubber stronger to wear, enhancing the durability of the product

XM-220(30μm)

*HI-ZEX MILLION™, MIPELON™, LUBMER™ are a registered trademark of Mitsui Chemicals, Inc.
*The figures are just representative values, but not guaranteed value.

UHMW-PE 6

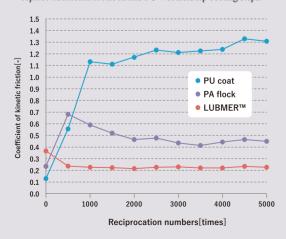
Application Example

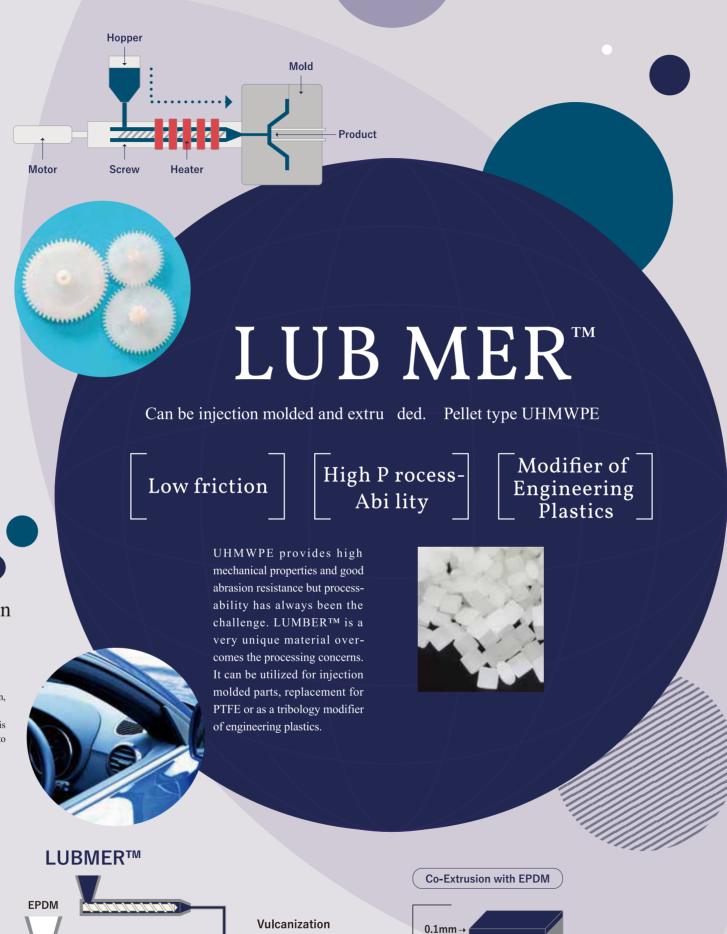
Lightweight Gears and Bearing with superb noiseless property

- This material can reduce a squeaking sound with a variety of materials
- •Can achieve grease-less gears and bearings
- •Improves durability due to high abrasion resistance
- •Contributes to light weight of the product

Coefficient of Friction with other materials

	Ring					
Sample	PA6	РОМ	S45C (Carbon Copper)			
LUBMER™	0.24	0.13	0.17			
PA6	2.15 Squeak Noise	1.41 Squeak Noise	0.52 Squeak Noise			
РОМ	1.41 Squeak Noise	0.49 Squeak Noise	0.27 Squeak Noise			


Suzuki Ring Abrasion Test


(trial temperature:23°C, Measured with various
Test piece material ring, load 0.2MPa, speed 30m/min)

Sliding Layer of Rubber

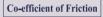
Contributes to increased production efficiency and total cost reduction in a co-extrusion process

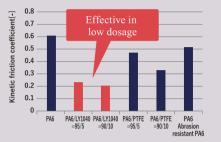
- The process-ability of LUBMER™ can realize efficient process of injection, extrusion, or insert mold
- •It can contribute to process reduction and total cost downs. An example is the co-extrusion of LUBMERTM in an automotive glass run channel seal to replace additional PA flock and PU weatherstrip coating steps.

EPDM

MD

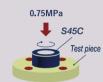
²30mm

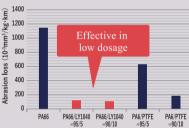

PTFE substitution


Halogen / PFOA Free Polymer Modifier

Modified LUBMER™

Better sliding properties than PTFE

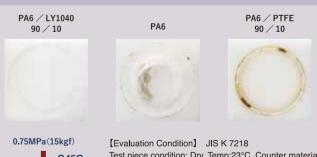

PA6 with Modifier LUBMER[™] Co-efficient of Friction


[Evaluation Condition] Test piece condition: Dry, Temp:23°C, Counter material=S45C, Load=15kg(0.75MPa), V=30m/min, distance=3km)

 Effectively improves sliding property in low dosage, better than other additives such as PTFE or Molybdenum Disulfide.

Better Abrasion Resistance than PTFE

PA66 with Modifier LUBMER[™]
Performance ~Abrasion Loss~


Abrasion resistance

[Evaluation Condition] Test piece condition: Dry, Temp:23°C, Counter material=S45C, Load=15kg(0.75MPa), V=30m/min, distance=3km)

•Improves abrasion resistance for higher durability and robust material

Ring abrasion test compared with LUBMER™ and PTFE

0.75MPa(15kgf)

S45C

Test piece

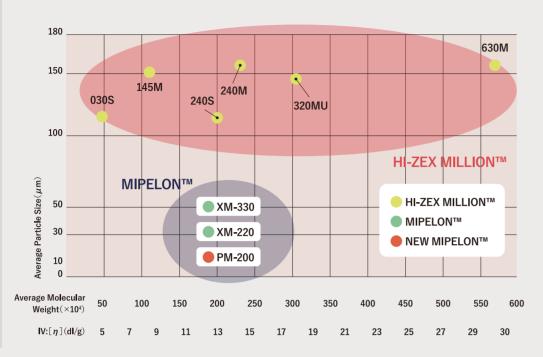
[Evaluation Condition] JIS K 7218

Test piece condition: Dry, Temp:23°C, Counter material=
S45C, Load=15kg(0.75MPa), V=30m/min, distance=3km

Measure time; 100 min

Specific abrasion amount calculation method:

Specific abrasion amount calculation method : Amount of abrasion/distance


Applicable materials for Modified LUBMER™

 $\mathsf{Polyamide}(\mathsf{PA6}, \mathsf{PA66}, \mathsf{Aromatic}\,\mathsf{PA}) \big|\, \mathsf{POM} \, \big|\, \mathsf{PBT} \, \big|\, \mathsf{PET} \, \big|\, \mathsf{PC} \, \big|\, \mathsf{ABS} \, \big|\, \mathsf{PPS} \, \big|\, \mathsf{etc.}$

*HI-ZEX MILLION™, MIPELON™, LUBMER™ are a registered trademark of Mitsui Chemicals, Inc *The figures are just representative values, but not guaranteed value

Average molecular weight and particle size

Physical properties

HI-ZEX MILLION™							
Properties	Unit	Test Method	030S	145M	240S	320MU	630M
average molecular weight*	×10 ⁴	MCI method	50	110	200	330	580
density	g/cm³	MCI method	949	940	938	934	929
Tensile strength at yield point	MPa		25	22	22	22	-
Tensile strength at break	%	ISO527-1/2(50mm/min)	7	9	9	11	0
Tensile elongation at break	%		700	450	400	350	300
Flexural Strength	MPa	ISO527-1/2(1mm/min)	950	750	750	750	700
Flexural modulus	MPa	ISO178	1100	950	900	900	800
Shore D Hardness	۰	ISO868	63	62	63	64	63
deflection temperature under load (1.8Mpa)	°C	ISO75 parts1 and 2	49	48	48	47	47
Vicat Softening Tempeature (VST)	°C	ISO306	79	80	80	82	82
linear expansion coefficient(23~80°C)*	×10 ⁻⁴ °C ⁻¹	ISO 11359 Method A	1.5	1.6	1.8	2.1	2.2

^{*:}Molecular weight= $5.37*104[\eta]_{1.37}$ *Anneal 90° C×30min

MIPELON™						
Properties	Unit	Test Method	PM-200	XM-220	XM-221U	XM-330
average molecular weight*	×10 ⁴	MCI method	180	200	200	200
average particular shape	μm	Coulter counter	10	30	25	65
density	kg/cm³	MCI method	938	937	937	937
Tensile strength at yield point	MPa	ISO527-1/2(50mm/min)	22	22	22	22
Tensile strength at break	%	ISO527-1/2(50mm/min)	9	9	9	9
Tensile elongation at break	%	ISO527-1/2(50mm/min)	400	400	400	400
Flexural Strength	MPa	ISO527-1/2(1mm/min)	850	850	850	850
Flexural modulus	MPa	ISO178	850	850	850	850
Shore D Hardness	۰	ISO868	63	63	63	63
$deflection\ temperature\ under\ load (1.8 MPa)$	°C	ISO75-1/2	48	48	48	48
Vicat Softening Tempeature (VST/B/50)	°C	ISO306	81	81	81	81
linear expansion coefficient(23°C-80°C)	×10 ⁴ /°C-1	ISO11359 Method A	1.7	1.7	1.7	1.7

^{*}Average Molecular Weight= $5.37\times10^{4}\times[~\eta~]_{1.37}$

LUBMER™

	L					
Dunantias	Unit	To as Marabard	S	with Filler		
Properties		Test Method	L3000	L4000	L5000	L4640
MFR(190°C,10kgf)	g/10min	MCI method	15	6	2	7
density	kg/cm³	ASTM D1505	969	967	966	1105
Tensile strength at yield point	MPa	ISO527-1/2(50mm/min)	35	37	48	50
Tensile strength at break	MPa	ISO527-1/2(50mm/min)	25	30	40	40
Tensile elongation at break	%	ISO527-1/2(50mm/min)	10	10	10	10
Flexural Strength	MPa	ISO527-1/2(1mm/min)	1450	1480	1580	1650
Flexural Strength	MPa	ISO178	38	40	45	50
Flexural modulus	MPa	ISO178	1700	1740	1900	2400
Charpy impact strength (V/ notched)	kJ/m²	ISO179	23	27	29	25
HDT(0.45MPa)	°C	ISO75-1/2	80	80	80	90
HDT(1.8MPa)	°C	ISO75-1/2	50	50	50	60
linear expansion coefficient(-30°C~120°C)	×10-⁴/°C	ISO11359-1/2	1.8	1.9	1.9	1.8
kinetic coefficient of friction	-	MCI method *	0.17	0.15	0.12	0.2
abrasion loss	10 ⁻³ mm ³ /kg•km	MCI method *	85	70	50	200
Limit PV value	MPa/m·min	MCI method *	>30	>30	>30	>30

^{*}Counter material: 45SC, load 15kg sliding distance = 3km *Counter material: SUS, V=12m/min, Each load 30 min holding (step width)

Example of conditions for square plate molding(120mm×130mm×3mmt)

Conditions for Injection Molding			L3000·L4000·L4640	L5000	LS4140*
	°C	C1	210	240	220
Parket and a second		C2	230~240	260	240
cylinder temperature		C3	C3 230~240		240
		Nozzle	240	260	240
Injection Pressure	MPa		50	95	50
Injection Time	sec		2~4	2~4	2~4
Injection Speed	mm/s		50	80	40
Holding Pressure	M	Pa	45	65	40
Holding Time	sec		10	20	5~10
Cooling Time	S	ec	15~20	20~25	15~20
Mold Temperature	۰	С	24~60(water cooling)		

Modified LUBMER™

PA66 + Modified LUBMER™

Properties	Test Method	Unit	PA66	PA66/LY1040 =98/2	PA66/LY1040 =95/5	PA66/LY1040 =90/10
MFR(280°C,2.16kgf)	MCI method	g/10min	64	58	47	32
Melting Point	MCI method	°C	262	262	262	262
density	MCI method	kg/cm³	1137	1126	1120	1117
Tensile strength at yield point	ISO527-1/2	MPa	90	95	90	80
Tensile Strength at Break	ISO527-1/2	MPa	-	-	-	-
Tensile elongation at break	ISO527-1/2	%	15	15	15	20
Flexural strength	ISO178	MPa	130	130	130	125
Flexural modulus	ISO178	MPa	2840	2830	2800	2700
Charpy impact strength (V/ notched)	ISO179	kJ/m²	4.5	4.5	5.0	6.0
HDT(0.45MPa)	ISO75-1/2	°C	200	200	200	190
Mold shrinkage(MD/TD)	MCI method	%	2.0/2.2	2.0/2.2	2.0/2.2	2.2/2.2
kinetic coefficient of friction	MCI method *	-	0.37	0.27	0.22	0.18
abrasion loss	MCI method*	10 ⁻³ mm ³ /kg·km	1150	170	120	110
Limit PV value	MCI method*	MPa/m·min	8	17	>30	>30

^{*}Counter material: 45SC, load 15kg sliding distance = 3km(JIS K7218) *Counter material: SUS, V=12m/min, Each load 30 min holding (step width)

^{*}LS4140 is hygroscopic material.

It is packaged in a moisture barrier bag and does not require drying, however, please use immediately after opening. If the product is left open and exposed to a moisture, drying process should be needed. The typical drying condition is 80°C heated dry air for few hours up to 9 hours.